viernes, 7 de septiembre de 2018

Propiedades de Cocientes


Propiedades de Cocientes 



Los números reales pueden estar representados por puntos en una recta l tal que cada número real a ahí corresponde exactamente a un punto en l y a cada punto P en l corresponde un número real. Esto se llama correspondencia uno a uno (o biunívoca). Primero escogemos un punto arbitrario O, llamado el origen y lo asociamos con el número 0. Los puntos asociados con los enteros se determinan entonces al trazar segmentos de recta sucesivos de igual longitud a ambos lados de O, como se ve en la figura 2. El punto correspondiente a un número racional, por ejemplo 23/5, se obtiene al subdividir estos segmentos de recta. Los puntos asociados con ciertos números irracionales, por ejemplo, se pueden hallar por construcción.




El número a que está asociado con un punto A en l es la coordenada de A. Nos referimos a estas coordenadas como un sistema de coordenadas y a l la llamamos recta de coordenadas o recta real. Se puede asignar una dirección a l al tomar la dirección positiva a la derecha y la dirección negativa a la izquierda. La dirección positiva se denota al colocar una punta de flecha en l, como se ve en la figura 2. Los números que corresponden a puntos a la derecha de O en la figura 2 son números reales positivos. Los números que corresponden a puntos a la izquierda de O son números reales negativos. El número real 0 no es ni positivo ni negativo. Nótese la diferencia entre un número real negativo y el negativo de un número real. En particular, el negativo de un número real a puede ser positivo. Por ejemplo, si a es negativo, digamos a=-3, entonces el negativo de   -a = -(-3) = 3, que es positivo. En general, tenemos las siguientes relaciones





No hay comentarios:

Publicar un comentario